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Olympiad Corner 
 
The 19th Balkan Mathematical Olympiad  
was held in Antalya, Turkey on April 27, 
2002. The problems are as follow. 
 
Problem 1. Let A1, A2, …, An  (n ≥  4) be 
points on the plane such that no three of 
them are collinear. Some pairs of distinct 
points among A1, A2, …, An are connected 
by line segments in such a way that each 
point is connected to three others. Prove 
that there exists k > 1 and distinct points 
X1, X2, …, X2k  in { A1, A2, …, An } so that 
for each 1 ≤  i ≤ 2k−1, Xi is connected to 
Xi+1 and X2k is connected to X1. 
  
Problem 2.  The sequence a1, a2, …, an, 
… is defined by a1 = 20, a2 = 30, an+2 = 
3an+1−an, n > 1. Find all positive integers 
n for which 1+5anan+1 is a perfect square. 
 
Problem 3. Two circles with different 
radii intersect at two pints A and B. The 
common tangents of these circles are MN 
and ST where the points M, S are on one 
of the circles and N, T are on the other. 
Prove that the orthocenters of the 
triangles AMN, AST, BMN and BST are 
the vertices of a rectangle. 
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     There are many mathematical game  
problems involving strategies to win or 
to defend. These games may involve 
number theoretical properties or 
combinatorial reasoning or geometrical 
decomposition. Some games may go on 
forever, while some games come to a 
stop eventually. A winning strategy is a 
scheme that allows a player to make 
moves to win the game no matter how 
the opponent plays. A defensive 
strategy cuts off the opponent’s routes 
to winning. The following examples 
illustrate some standard techniques. 
 
Examples 1. There is a table with a 
square top. Two players take turn 
putting a dollar coin on the table. The 
player who cannot do so loses the game. 
Show that the first player can always 
win. 
 
Solution. The first player puts a coin at 
the center. If the second player can 
make a move, the first player can put a 
coin at the position symmetrically 
opposite the position the second player 
placed his coin with respect to the 
center of the table. Since the area of the 
available space is decreasing, the game 
must end eventually. The first player 
will win. 
 
Example 2. (Bachet’s Game) Initially, 
there are n checkers on the table, where 
n > 0. Two persons take turn to remove 
at least 1 and at most k checkers each 
time from the table. The last person who 
can remove any checker wins the game. 
For what values of n will the first person 
have a winning strategy? For what 
values of n will the second person have 
a winning strategy? 
 
Solution. By testing small cases of n, 
we can easily see that if n is not a 
multiple of k + 1 in the beginning, then 
the first person has a winning strategy, 
otherwise the second person has a 
winning strategy. 

To prove this, let n be the number of 
checkers on the table. If n = (k +1)q + r  
with 0 < r < k + 1, then the first person 
can win by removing r checkers each 
time. (Note r > 0 every time at the first 
person’s turn since in the beginning it is 
so and the second person starts with a 
multiple of k + 1 checkers each time and 
can only remove 1 to k checkers.) 

 
However, if n is a multiple of k + 1, then 
no matter how many checkers the first 
person takes, the second person can now 
win by removing r checkers every time. 
 
Example 3. (Game of Nim) There are 3 
piles of checkers on the table. The first, 
second and third piles have x, y and z 
checkers respectively in the beginning, 
where x, y, z > 0. Two persons take turn 
choosing one of the three piles and 
removing at least one to all checkers in 
that pile each time from the table. The 
last person who can remove any checker 
wins the game. Who has a winning 
strategy? 

 
Solution. In base 2 representations, let 

 
   x  =  (a1a2…an)2,   y  =  (b1b2…bn)2, 

   z   =  (c1c2…cn)2,    N =  (d1d2…dn)2,   
where di  ≡ ai + bi + ci  (mod 2). The first 
person has a winning strategy if and only 
if N is not 0, i.e. not all di’s are 0. 

 
 To see this, suppose N is not 0. The 
winning strategy is to remove checkers 
so N becomes 0. When the di’s are not all 
zeros, look at the smallest i such that di 
=1, then one of ai, bi,, ci equals 1, say ai = 
1. Then remove checkers from the first 
pile so that  x = (eiei+1…en)2 checkers are 
left, where ej = aj if dj = 0, otherwise ej = 
1 – aj. 
 
(For example, if x = (1000)2 and N = 
(1001)2, then change x to (0001)2 .) After 
the move, N becomes 0. So the first 
person can always make a move. The 
second person will always have N = 0 at 
his turn and making any move will result 
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in at least one di not 0, i.e. N≠ 0. As the 
number of checkers is decreasing, 
eventually the second person cannot  
make a move and will lose the game. 
 
Example 4.  Twenty girls are sitting 
around a table and are playing a game 
with n cards. Initially, one girl holds all 
the cards. In each turn, if at least one 
girl holds at least two cards, one of 
these girls must pass a card to each of 
her two neighbors. The game ends if 
and only if each girl is holding at most 
one card. 
 
(a) Prove that if n ≥ 20, then the game 
cannot end. 
(b) Prove that if n < 20, the game must 
end eventually. 
 
Solution. (a) If n > 20, then by the 
pigeonhole principle, at every moment 
there exists a girl holding at least two 
cards. So the game cannot end.   
 
If n = 20, then label the girls G1, G2, …, 
G20 in the clockwise direction and let 
G1 be the girl holding all the cards 
initially. Define the current value of a 
card to be i if it is being held by Gi. Let 
S be the total value of the cards. 
Initially, S = 20.  
 
Consider before and after Gi passes a 
card to each of her neighbors. If i = 1, 
then S increases by − 1 − 1 + 2 + 20=20. 
If 1 < i < 20, then S does not change 
because − i − i + ( i − 1) + ( i + 1) = 0. If 
i = 20, then S decreases by 20 because 
− 20 − 20 + 1 + 19 = −20. So before and 
after moves, S is always a multiple of 
20. Assume the game can end. Then 
each girl holds a card and S = 1 + 2 + ⋯ 
+ 20 = 210, which is not a multiple of 
20, a contradiction. So the game cannot 
end. 
 
(b) To see the game must end if n < 20, 
let’s have the two girls sign the card 
when it is the first time one of them 
passes card to the other. Whenever one 
girl passes a card to her neighbor, let’s 
require the girl to use the signed card 
between the pair if available. So a 
signed card will be stuck between the 
pair who signed it. If n < 20, there will 
be a pair of neighbors who never 
signed any card, hence never exchange 
any card. 
 
    If the game can go on forever, record 
the number of times each girl passed 
cards. Since the game can go on 

forever, not every girl passed card finitely 
many time. So starting with a pair of girls 
who have no exchange and moving 
clockwise one girl at a time, eventually 
there is a pair Gi and Gi+1 such that  Gi 
passed cards finitely many times and Gi+1 
passed cards infinitely many times. This is 
clearly impossible since Gi will eventually 
stopped passing cards and would keep on 
receiving cards from Gi+1. 
 
Example 5. (1996 Irish Math Olympiad) 
On a 5 × 9 rectangular chessboard, the 
following game is played. Initially, a 
number of discs are randomly placed on 
some of the squares, no square containing 
more than one disc. A turn consists of 
moving all of the discs subject to the 
following rules: 
 
(i) each disc may be moved one square up, 
down, left or right; 
(ii) if a disc moves up or down on one turn, 
it must move left or right on the next turn, 
and vice versa; 
(iii) at the end of each turn, no square can 
contain two or more discs. 
 
The game stops if it becomes impossible 
to complete another turn. Prove that if 
initially 33 discs are placed on the board, 
the game must eventually stop. Prove also 
that it is possible to place 32 discs on the 
board so that the game can continue 
forever. 
  
Solution. If 32 discs are placed in the 
lower right 4 × 8 rectangle, they can all 
move up, left, down, right, repeatedly and 
the game can continue forever.  
 
To show that a game with 33 discs must 
stop eventually, label the board as shown 
below: 
 
   1     2     1     2      1     2     1     2     1    
   2     3     2     3      2     3     2     3     2 
   1     2     1     2      1     2     1     2     1         
   2     3     2     3      2     3     2     3     2 
   1     2     1     2      1     2     1     2     1         
 
Note that there are only eight squares 
labeled with 3’s. A disc on 1 goes to a 3 
after two moves, a disc on 2 goes to a 1 or 
3 immediately, and a disc on 3 goes to a 2 
immediately. Thus if k discs start on 1 and 
k > 8, the game stops because there are not 
enough 3’s to accommodate these discs 
after two moves. Thus we assume k ≤ 8, in 
which case there are at most sixteen discs 
on squares with 1’s or 3’s at the start, and 
at least seventeen discs on squares with 
2’s. Of these seventeen discs, at most eight 

can move onto squares with 3’s after 
one move, so at least nine end up on 
squares with 1’s. These discs will not 
all be able to move onto squares with 
3’s two moves later. So the game must 
eventually stop. 
 
Example 6. (1995 Israeli Math 
Olympiad) Two players play a game on 
an infinite board that consists of 1 × 1 
squares. Players I chooses a square and 
marks it with an O. Then, player II 
chooses another square and marks with 
an X. They play until one of the players 
marks a row or a column of five 
consecutive squares, and this player 
wins the game. If no player can achieve 
this, the game is a tie.  Show that player 
II can prevent player I from winning. 
 
Solution: Label the squares as shown 
below.  
 
       ⋮  ⋮   ⋮  ⋮  ⋮   ⋮  ⋮  ⋮ 
   ⋯  1    2    3    3    1    2    3    3  ⋯ 
    ⋯  1    2    4    4    1    2    4    4  ⋯ 
   ⋯   3    3    1    2    3    3   1    2  ⋯ 
    ⋯  4    4    1    2    4    4    1    2  ⋯ 
   ⋯  1    2    3    3    1    2    3    3  ⋯ 
    ⋯  1    2    4    4    1    2    4    4  ⋯ 
   ⋯   3    3    1    2    3    3   1    2  ⋯ 
    ⋯  4    4    1    2    4    4    1    2  ⋯ 
       ⋮   ⋮  ⋮  ⋮   ⋮  ⋮  ⋮   ⋮ 
 
 
Note that each number occurs in a 
pair. The 1’s and 2’s are in vertical 
pairs and the 3’s and 4’s are in 
horizontal pairs. Whenever player I 
marks a square, player II will mark 
the other square in the pair. Since any 
five consecutive vertical or horizontal 
squares must contain a pair of these 
numbers, so player I cannot win. 
 
Example 7. (1999 USAMO) The Y2K 
Game is played on a 1 × 2000 grid as 
follow. Two players in turn write either 
an S or an O in an empty square. The 
first player who produces three 
consecutive boxes that spell SOS wins. 
If all boxes are filled without 
producing any SOS, then the game is a 
draw. Prove that the second player has 
a winning strategy. 
 
Solution. Call an empty square bad if 
playing an S or an O in that square will 
let the next player gets SOS in the next 
move. 
 
                             (continued on page 4) 
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Problem Corner  
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration. The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is January 26, 2003. 
 
Problem 166.  (Proposed by Ha Duy 
Hung, Hanoi University of Education, 
Hanoi City, Vietnam) Let a, b, c be 
positive integers, [x] denote the 
greatest integer less than or equal to x 
and min{x,y} denote the minimum of x 
and y.  Prove or disprove that   
 
c [a/b] – [c/a] [c/b]  ≤  c min{1/a, 1/b}. 
 
Problem 167.  (Proposed by  José Luis 
Díaz-Barrero, Universitat Politècnica 
de Catalunya, Barcelona, Spain) Find 
all positive integers such that they are 
equal to the sum of their digits in base 
10 representation. 
 
Problem 168.   Let AB and CD be 
nonintersecting chords of a circle and 
let K be a point on CD. Construct (with 
straightedge and compass) a point P on 
the circle such that K is the midpoint of 
the part of segment CD lying inside 
triangle ABP. 
 
Problem 169.  300 apples are given, no 
one of which weighs more than 3 times 
any other. Show that the apples may be 
divided into groups of 4 such that no 
group weighs more than 11/2 times any 
other group. 
 
Problem 170.  (Proposed by 
Abderrahim Ouardini, Nice, France) 
For any (nondegenerate) triangle with 
sides a, b, c, let ∑’ h (a, b, c) denote the 
sum h (a, b, c) + h (b, c, a )+ h (c, a, b). 
Let  f (a, b, c) = ∑’ ﴾a / (b + c – a)﴿2 and 
g (a, b, c) =∑’ j(a, b, c), where j(a,b,c)= 
(b + c – a) / ))(( cbabac −+−+ . 
Show that f (a, b, c)≥ max{3,g(a, b, c)} 
and determine when equality occurs. 
(Here max{x,y} denotes the maximum 
of x and y.) 

 
 

***************** 
Solutions 

***************** 
 
Problem 161.  Around a circle are written 
all of the positive integers from 1 to N, N ≥ 
2, in such a way that any two adjacent 
integers have at least one common digit in 
their base 10 representations. Find the 
smallest N  for which this is possible. 
(Source: 1999 Russian Math Olympiad) 
 
Solution.  CHAN Wai Hong (STFA 
Leung Kau Kui College, Form 7), CHAN 
Yan Sau (True Light Girls’ College, Form 
6), CHAN Yat Fei (STFA Leung Kau Kui 
College, Form 6), CHEUNG Yun Kuen 
(Hong Kong Chinese Women’s Club 
College, Form 5), CHUNG Ho Yin 
(STFA Leung Kau Kui College, Form 6), 
LAM Wai Pui (STFA Leung Kau Kui 
College, Form 5), LEE Man Fui (STFA 
Leung Kau Kui College, Form 6), 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13), LEUNG 
Chi Man (Cheung Sha Wan Catholic 
Secondary School, Form 6), SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7) and 
Richard YEUNG Wing Fung (STFA 
Leung Kau Kui College, Form 5). 
 
Note one of the numbers adjacent to 1 is at 
least 11. So N ≥ 11. Then one of the 
numbers adjacent to 9 is at least 29. So N 
≥ 29. Finally  N = 29 is possible by 
writing 1, 11, 12,  2, 22, 23, 3, 13, 14, 4, 
24, 25, 5, 15, 16, 6, 26, 27, 7, 17, 18, 8, 
28, 29, 9, 19, 21, 20, 10 around a circle. 
Therefore, the smallest N is 29. 
 
Problem 162.  A set of positive integers is 
chosen so that among any 1999 
consecutive positive integers, there is a 
chosen number. Show that there exist two 
chosen numbers, one of which divides the 
other. (Source: 1999 Russian Math 
Olympiad) 
 
Solution.  SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 
Define A(1, i) = i for i=1,2,K , 1999. For 
k ≥  2, let B(k) be the product of A(k–1, 1), 
A(k–1, 2), K , A(k–1, 1999) and define 
A(k, i) = B(k) + A(k–1, i) for i = 1,2,K , 
1999. Since B(k) is a multiple of A(k–1, i), 
so A(k, i) is also a multiple of A(k–1, i). 
Then m < n implies A(n, i) is a multiple of 
A(m, i).  
 
Also, by simple induction on k, we can 
check that A(k, 1), A(k, 2), K , A(k, 1999) 
are consecutive integers. So for k = 1,2, 
K , 2000, among  A(k, 1), A(k, 2), K , 
A(k, 1999), there is a chosen number A(k, 

ik). Since  1 ≤ ik ≤ 1999, by the 
pigeonhole principle, two of the ik’s are 
equal. Therefore, among the chosen 
numbers, there are two numbers with 
one dividing the other.  
 
Comments: The condition “among any 
1999 consecutive positive integers, 
there is a chosen number” is meant to 
be interpreted as “among any 1999 
consecutive positive integers, there 
exists at least one chosen number.” The 
solution above covered this 
interpretation. 
 
Other commended solvers: CHAN 
Wai Hong (STFA Leung Kau Kui 
College, Form 7), CHAN Yat Fei (STFA 
Leung Kau Kui College, Form 6), 
CHEUNG Yun Kuen (Hong Kong 
Chinese Women’s Club College, Form 5) 
and Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13). 
 
Problem 163.  Let a and n be integers.  
Let  p be a  prime number such that  p  
>  |a| + 1.  Prove  that  the  polynomial   
f (x) =  xn + ax + p cannot be the product 
of two nonconstant polynomials with 
integer coefficients. (Source: 1999 
Romanian Math Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7) and TAM 
Choi Nang Julian (SKH Lam Kau Mow 
Secondary School). 
 
 Assume  we have  f  ( x ) = g  ( x )  h  ( x ) , 
where  g (x) and h(x) are two nonconstant 
polynomials with integer coefficients. 
Since p = f  ( 0 ) = g ( 0 ) h ( 0 ) , we  have  
either   
 
         g  ( 0 ) = ±  p,    h ( 0 ) = ± 1  
  or   g  ( 0 ) = ± 1,     h ( 0 ) = ± p.  
 
Without loss of generality, assume g ( 0 ) 
= ± 1. Then g (x) = ± xm  +  ⋯ ± 1. Let  z1 , 
z2 , K , zm be the (possibly complex) 
roots of g (x). Since 1 = |g ( 0 )| = |z1| |z2| 
⋯|zm| , so  |zi|  ≤  1 for some i. Now  0 =  f 
( zi  ) = zi

n + azi + p implies  
 
p =  – zi

n – azi ≤  |zi|n + |a| |zi| ≤  1 + |a|,  
 
a contradiction.  
 
Other commended solvers: FOK Kai 
Tung (Yan Chai Hospital No. 2 
Secondary School, Form 6). 
 
Problem 164.   Let O  be  the  center  of  
the excircle of triangle ABC opposite A. 
Let M be the midpoint of AC and let P 
be the intersection of lines MO and BC. 
Prove that if ∠BAC = 2∠ACB, then AB 
= BP.  (Source: 1999 Belarussian Math 
Olympiad) 
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Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 
Let AO cut BC at D and AP extended cut 
OC at E. By Ceva’s theorem (∆AOC and 
point P),  we have 
      
          .1=××

DA
OD

EO
CE

MC
AM  

 
Since AM = MC, we get OD/DA = 
OE/EC, which implies DE║AC. Then 
∠EDC = ∠DCA = ∠DAC = ∠ODE, 
which implies DE bisects ∠ODC. In 
∆ACD, since CE and DE are external 
angle bisectors at ∠C and ∠D 
respectively, so E is the excenter of  
∆ACD opposite A. Then AE bisects 
∠OAC so that ∠DAP = ∠CAP. 
Finally,  
 
     ∠BAP = ∠BAD + ∠DAP  
                  = ∠DCA + ∠CAP  
                  = ∠BPA.  
 
Therefore,  AB = BP. 
 
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5) and 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13).   
 
Problem 165.  For a  positive  integer  
n,  let S (n) denote the sum of its digits. 
Prove that  there exist distinct positive 
integers n1, n2, …, n50 such that   
 
   L=+=+ )()( 2211 nSnnSn  
 
                       ).( 5050 nSn +=  
 
(Source: 1999 Polish Math Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 
We will prove the statement that for m > 1, 
there are positive integers n1 < n2 < ⋯ < 
nm such that all ni + S(ni ) are equal and 
nm is of the form 10⋯08 by induction. 
 
For the case m = 2, take n1 = 99 and n2 = 
108, then ni + S(ni ) = 117. 
 
 Assume the case m = k is true and   nk = 
10⋯08 with h zeros. Consider the case 
m = k + 1. For i = 1, 2, …, k, define 
 
     Ni

 = ni + C,  where C = 99⋯900⋯0 
 
(C has nk – 8 nines and h + 2 zeros) and 
Nk+1 = 10⋯08 with nk – 7 + h zeros. 
Then for  i = 1, 2, …, k, 
 
Ni

 + S(Ni
  ) = C + ni + S(ni ) + 9(nk – 8)  

 
are all equal by the case m = k. Finally, 
 

Nk
 + S(Nk

  ) = C + nk + 9 + 9(nk – 8) 
                  =10⋯017 ( nk – 8 + h zeros) 
                  =10⋯008 + 9   
                  =Nk+1

 + S(Nk+1 )  
completing the induction. 
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5). 
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Problem 4.  Find all functions f: ℕ→ℕ 
such that for each  n ∈ ℕ, 
    
       2n + 2001 ≤   f ﴾ f (n)﴿ + f (n) 
                         ≤  2n + 2003. 
 
( ℕ is the set of all positive integers.)  
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Key Observation: A square is bad if and 
only if it is in a block of 4 consecutive 
squares of the form S**S, where * denotes 
an empty square. 
 
(Proof. Clearly, the empty squares in S**S 
are bad. Conversely, if a square is bad, 
then playing an O there will allow an SOS 
in the next move by the other player. Thus 
the bad square must have an S on one side 
and an empty square on the other side. 
Playing an S there will also lose the game 
in the next move, which means there must 
be another S on the other side of the empty 
square.) 
 
Now the second player’s winning strategy 
is as follow: after the first player made a 
move, play an S at least 4 squares away 
from either end of the grid and from the 
first player’s first move. On the second 
move, the second player will play an S 
three squares away from the second 
player’s first move so that the squares in 
between are empty. (If the second move of 
the first player is next to or one square 
away from the first move of the second 
player, then the second player will place 
the second S on the other side.) After the 
second move of the second player, there 
are 2 bad squares on the board. So 
eventually somebody will fill these 
squares and the game will not be a draw. 
 

On any subsequent move, when the 
second player plays, there will be an 
odd number of empty squares and an 
even number of bad squares, so the 
second player can always play a square 
that is not bad. 
 
Example 8. (1993 IMO) On an infinite 
chessboard, a game is played as follow. 
At the start, n2 pieces are arranged on 
the chessboard in an n × n block of 
adjoining squares, one piece in each 
square. A move in the game is a jump 
in a horizontal or vertical direction 
over an adjacent occupied square to an 
unoccupied square immediately 
beyond. The piece that has been 
jumped over is then removed. Find 
those values of n for which the game 
can end with only one piece remaining 
on the board. 
 
Solution. Let ℤ denotes the set of 
integers.   Consider the pieces placed at 
the lattice points ℤ2 = { (x, y) : x, y ∈ℤ}. 
For k = 0, 1, 2, let Ck = { (x, y) ∈ℤ2 : 
x+y ≡ k (mod 3)}. Let ak be the number 
of pieces placed at lattice points in Ck. 
 
A horizontal move takes a piece at (x, y) 
to an unoccupied point (x ± 2, y) 
jumping over a piece at (x ± 1, y). After 
the move, each ak goes up or down by 1. 
So each ak changes parity. If n is 
divisible by 3, then a0 = a1 = a2 = n2/ 3  
in the beginning. Hence at all time, the 
ak’s are of the same parity. So the game 
cannot end with one piece left causing 
two ak’s 0 and the remaining 1. 
 
If n is not divisible by 3, then the game 
can end. We show this by induction. 
For n = 1 or 2, this is easily seen. For n 
≥  4, we introduce a trick to reduce the   
n × n square pieces to (n–3) × (n–3) 
square pieces. 
 
Trick: Consider pieces at (0,0), (0,1), 
(0,2), (1,0). The moves (1,0) → (–1,0), 
(0,2) → (0,0), (–1,0) → (1,0) remove 
three consecutive pieces in a column 
and leave the fourth piece at its original 
lattice point.  
 
We can apply this trick repeatedly to 
the 3 × (n – 3) pieces on the bottom left 
part of the n × n squares from left to 
right, then the n × 3 pieces on the right 
side from bottom to top. This will leave 
(n–3) × (n–3) pieces. Therefore, the n 
× n case follows from the (n–3) × (n–3) 
case, completing the induction. 


