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The concept of commensurable magnitudes can be traced back to the ancient Greeks
[7]. Recall that two magnitudes are commensurable if their ratio is given by a pair of
positive integers. An interesting theorem in number theory related to commensurable
angles states:

Theorem 1. If α is rational in degrees, say α = r360◦ for some rational number r ,
then the only rational values of the trigonometric functions of α are as follows:

cos(α), sin(α) = 0, ±(1/2), ±1,

sec(α), csc(α) = ±1, ±2,

tan(α), cot(α) = 0, ±1.

This result is sometimes referred to as Niven’s theorem, as it appears in two of
his books (see [12, Corollary 3.12] or [13, Theorem 6.16]). On the other hand, Niven
himself has written:

A proof of [Theorem 1] . . . was given by J. M. H. Olmsted [14]. The topic is a
recurring one in the popular literature: as examples we cite H.A. Bradford and
H. Eves [1]; R. W. Hamming [8]; E. Swift [16]; R. S. Underwood [17].

In the last fifty years, other authors have produced proofs of this result, and more
recently many applications of it, both elementary and advanced, have arisen [2–6, 9–
11, 13, 15].

We present a new proof that is very elementary. In our opinion, it is feasible for
teachers and it is has proven easy to understand for high school students.

Proof of the theorem

Our proof avoids the advanced tools like induction, the de Moivre formulas, Cheby-
shev polynomials, or cyclotomic polynomials that are typically used. For instance, see
Bergen [3], Calcut [6], Niven, Zuckerman, and Motgomery [13], or Underwood [17].
In Jahnel [11], the reader can find interesting insights for an elementary proof, even if
some infinite processes are used in the argument.

The idea of our proof is essentially based on the periodicity of the function cos(x),
which allows us to reduce the problem to the analysis of a few cases.
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Proof. It is sufficient to confine the proof to the cosine and tangent functions.
First, we assume that cos(α) is a rational number different from 0. We will prove

that

cos(α) ∈
{
±1, ±1

2

}
.

Write

cos(α) = p

q
�= 0,

where p, q ∈ Z and are coprime.
Fix n such that nα is an integer multiple of 360◦.
For every positive integer i, we put αi = ( i

n
)360◦. Let m be such that αm = α, so

that by hypothesis cos(αm) is a rational number. It follows that

Tn := {cos(αi) ∈ Q \ {0} | i ∈ N} ,

is a finite, non-empty set of rational numbers. Each element of Tn is of the type
cos(αi) := pi

qi
, where pi ∈ Z \ {0} and qi ∈ N are coprime. Among them we may

choose an element, say cos(αk) = pk

qk
, whose denominator qk is the greatest.

We now have that

α2k = 2αk =
(

2
k

n

)
360◦.

It follows that

cos(α2k) = cos(2αk) = 2p2
k − q2

k

q2
k

is a rational number.
Note that pk and qk are coprime. It follows that if qk is odd, then 2p2

k − q2
k and

q2
k are both different from 0 and coprime. Hence, by the choice of qk, we have that

qk ≥ q2
k . This yields qk = 1.

If qk = 2s is even (s ∈ N), then

cos(2αk) = 2p2
k − q2

k

q2
k

= p2
k − 2s2

2s2
.

On the other hand, pk and qk are coprime, and each divisor of s is also a divisor of qk.
Therefore, the last term above is a reduced fraction different from 0. By the choice of
qk, we have that

qk ≥ 2s2 = q2
k

2
.

Thus, qk is either 1 or 2, and hence cos(α) ∈ {±1, ± 1
2

}
.

The tan(α) part is routine, and we will only sketch the proof.
Suppose that tan(α) is a rational number. Clearly, we may assume that 0 ≤ α <

180◦. It follows by a basic trigonometric relation that

cos(2α) = 1 − tan2(α)

1 + tan2(α)
,
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is a rational number. The first part of the proof shows that

2α ∈ {0◦, 60◦, 90◦, 120◦, 180◦, 240◦, 270◦, 300◦}.
It follows that

α ∈ {0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦}.
By hypothesis tan(α) is rational, so that the only possible values for α are 0◦, 45◦,

135◦.
This completes the proof. �
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Summary. We give an elementary proof of the well-known theorem that gives the rational values of trigonomet-
ric functions of angles that are rational in degrees. Our proof avoids the traditional arguments based on induction,
the de Moivre formulas, Chebyshev polynomials, or cyclotomic polynomials that are typically used.
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